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The triple-collision operator of dense gas theory is analyzed for a quantum- 
mechanical gas obeying Boltzmann statistics. The contribution of two-body 
bound states is extracted by using Faddeev's representation of the three-body 
resolvent. The result is a binary atom-molecule collision operator which in- 
cludes the effects of molecular formation and breakup, and inelastic and 
rearrangement collisions. An additional contribution is a modification of the 
Boltzmann collision operator due to the binding of one member of the colliding 
pair to a third particle. The analysis is carried out in the framework of the 
Green-Kubo formulas so the operators considered are linear and the results are 
in a form suitable for the evaluation of the transport coefficients. 

KEY WORDS: Kinetic theory; triple collisions; polyatomic gases; inelastic 
collisions; reactions. 

1. INTRODUCTION 

The Boltzmann equation provides a sound basis for the description of 
processes in low-density monatomic gases in which the particles interact by 
binary elastic collisions. In a molecular gas there is the additional possibil- 
ity of inelastic collisions and reactions. 2 A kinetic theory which includes 
inelastic collisions was presented by Wang-Chang, Uhlenbeck, and de- 
Boer. (2) Their theory is based on a distribution function which depends on 
the position and velocity of the center of mass of a molecule, and on the 
quantum numbers which label the internal states. A more general theory 
was developed by Waldmann and Snider, 3 who took the distribution 

1 Department of Physics, Number 16, Lehigh University, Bethlehem, Pennsylvania 18015. 
2 Some discussion of kinetic theory for polyatomic gases can be found in Ref. 1. 
3 See Waldmann (Ref. 3). The Waldmann-Snider equation and its applications have been 

reviewed by Beenakker and McCourt and by Moraal (Ref. 3). 
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function to be a density matrix with respect to the internal states. Their 
density matrix is diagonal in the internal molecular energies, but in case of 
degeneracy need not be fully diagonal. Reactions have been considered in 
the context of the Waldmann-Snider  equation by Lowry and Snider, (4) 
and rearrangement collisions between an atom and a diatomic molecule 
have been discussed by Eu. (~) The approach generally has been to treat the 
molecule as a particle rather than a composite system. The existence of 
different internal states is allowed for, but collisions are assumed to occupy 
small intervals of space and time. 

A different line of development has dealt with the kinetic theory for 
dense monatomic  gases. A generalization of the Boltzmann equation to the 
dense hard-sphere gas was obtained by Enskog. (6) Enskog's equation 
contains a density-dependent correction to the collision frequency, and also 
takes account of the finite spatial extent of a collision and the collisional 
transfer of energy and momentum.  A more general approach, initiated by 
Bogoliubov (v) and analyzed further by Green (8) and Cohen, ~ leads to a 
kinetic equation in which the binary collision operator is augmented by 
terms describing triple and, in principle, higher-order collisions. By now 
this theory has been extensively developed, particularly for classical gases 
with repulsive interactions. 4 

The approach developed in dense-gas theory should also be applicable 
when the interaction between particles can support bound states. Extrac- 
tion of the bound-state contributions can then provide a description of 
molecular processes. In such an approach molecules will occur as an 
automatic consequence of the dynamics, and all effects associated with a 
given order in the density can be obtained together in a consistent way. The 
composite nature of the molecule is fully taken into account, as are its finite 
size and the finite extent of collisions. Such a derivation is the dynamic 
analog of the equilibrium virial expansion where the molecular contribution 
to the second virial coefficient is obtained as the bound-state part  of the 
Beth-Uhlenbeck formula. 5 

In this paper  the triple-collision operator of dense-gas theory will be 
analyzed with the purpose of extracting the contribution of bound states. 6 
This provides a description of the molecular processes which can occur in a 

4 For a recent review see Ref. 10. 
5 Bound-state contributions in the equilibrium problem have been treated with techniques 

similar to those used here in Ref. 11. 
6 The triple-collision operator for a classical gas with attractive forces has been discussed by 

Kawasaki and Oppenheim (Ref. 12). Other work on the effect of attractive forces in classical 
theory includes Davis et al., Kim and Ross, Dufty and Gubbins, and Marchetti and Dufty 
(Ref. 12). 
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system of three atoms, including collisions involving an atom and a 
diatomic molecule. The system considered is a quantum-mechanical gas of 
identical particles obeying Boltzmann statistics, and interacting by two- 
body central forces. 

The triple collision operator to be analyzed is the linear operator 
obtained from the density expansion of the G reen -K u b o  formula for a 
transport coefficient. The fluxes occurring in the Green -Kubo  formula are 
taken to be sums of single-particle operators. Hence the potential-energy 
terms which lead to collisional transfer of energy and momentum are not 
included. Methods are known 7 for dealing with collisional transfer in a 
monatomic gas, and its inclusion in the theory for a polyatomic gas is 
discussed briefly in the last section below. 

The triple-collision operator depends on the time-development opera- 
tor for the three-body system, and also contains repeated two-body time- 
development operators. Bound-state contributions to the latter lead to a 
modification of the Boltzmann collision operator in which one of the 
colliding particles is bound to a third particle; this modification is loosely 
analogous to Enskog's correction to the collision frequency. The remaining 
bound-state contributions are extracted by using Faddeev's representation 
of the three-body resolvent. ~4) This results in a set of atom-molecule 
collision operators which describe molecular formation and dissociation, 
elastic and inelastic scattering, and rearrangement collisions. 8 These act on 
matrix elements (with respect to the molecular states) of two-body contribu- 
tions to the fluxes in the Green -Kubo  formula; as in Waldmann-Snider  
theory the matrices need not be diagonal but only elements which are 
diagonal in the molecular energy occur. In addition there occur terms in 
which the two fluxes are correlated over the molecular state; for the 
thermal conductivity and viscosity these terms depend on the correlation of 
an internal stress in the molecule. 

Since the discussion is based on the Green -Kubo  formulas, the results 
are in a form which would be convenient for the evaluation of the transport 
coefficients. However, such evaluation would require knowledge of the 
three-body scattering and reaction amplitudes which appear in the final 
form of the collision operators, and this problem is not considered here. 9 
Detailed analysis of the three-body problem is of course difficult. (Even for 
classical hard spheres the calculation by Sengers and co-workers ~17) of the 

7 Collisional transfer in the Enskog hard-sphere theory is discussed in Ref. 6. Other treatments 
of collisional transfer in monatomic gases are given in Ref. 13. 

8 A preliminary report of some of the results obtained here has been given in Ref. 15. 
9 Recent discussions of three- (and more-) body collisions can be found in Ref. 16. 
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three-body contributions to the transport coefficients required heroic ef- 
forts.) However, the results obtained below at least provide a framework for 
input, from theory or experiment, on the amplitudes, and less-than-perfect 
input could lead to improved semiempirical formulas for the transport 
coefficients. 

The complete triple-collision operator is obtained by adding the results 
obtained here to the collision operator for scattering of three free particles 
(that is, scattering in which neither initial nor final states contain bound 
particles). This operator, for the quantum-mechanical case, has been dis- 
cussed by Resibois, ~ls) and the analysis given here has several points of 
similarity with that of Resibois. Actually the bound-state part is easier to 
analyze since binding partially reduces the three-body problem to a two- 
body problem. The free-to-free scattering leads to a long-time divergence of 
the contribution from reducible diagrams; this divergence is canceled by 
other contributions to the triple-collision operator but its treatment still 
requires care. Binding leads to a milder long-time dependence so that the 
various terms are individually convergent. 

The results obtained below apply to a gas with a low degree of 
association. If the concentration of molecules is significant, it becomes 
necessary to include molecule-molecule collisions. Their description, in the 
approach used here, would require analysis of the four-body collision 
operator of dense-gas theory. 

Transport processes can of course be described by kinetic equations 
rather than with the correlation-function approach used here. Kinetic 
equations are needed particularly for the theory of chemical reaction rates 
as formulas of the Green-Kubo type are not available for this case. The 
construction of the kinetic equations for a gas with bound states will be 
discussed in a separate publicationJ 19) 

2. TRIPLE-COLLISION OPERATOR 

This section will provide a derivation of the triple-collision operator 
which is the object of interest in the remainder of the paper. The system 
considered is a quantum gas of identical particles obeying Boltzmann 
statistics. The derivation is based on the time-dependent cluster expan- 
sion (8'9'~~ for a time-dependent correlation function. 1~ 

Let A N be an operator on the Hilbert space for the N-particle system, 
which initially is assumed to be confined to a region of volume V. The 

io The cluster expansion for time-dependent correlation functions in quantum mechanics has 
been discussed in Ref. 20. 
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grand-canonical average is given by 
oo 

1 ( A )  = e -Q 2 -~.  e~;NTrNe-BtluAN (1) 
N~O 

Here fl = 1 / k T  where k is Boltzmann's constant and T the Kelvin temper- 
ature, ~ = fl/z where /t is the chemical potential, H N is the Hamiltonian 
operator for the N-particle system, and Tr N denotes the trace associated 
with the N-particle Hilbert space. In addition the grand potential Q is 
determined by 

e Q =  ~ ,  -~lz~ e~NTrue-#UN (2) 
N=O N .  

We assume two-body interactions, so HN is 
N 

1 HN = Z (p~/2m) + ~ Z V.~ (3) 
a= 1 aB 

where/v~ is the momentum of the ath particle, m is the mass, and V~ is the 
potential energy of the pair a, ft. 

The transport coefficients can be obtained from time-dependent corre- 
lation functions by means of the Green-Kubo formulas whose general 
form is C2~) 

C,4~ = foo ~ dt C~, (t) (4) 

where CAB(t ) is the correlation function (per unit volume) 

CA~(t)= lira V - ' [ ( A B ( t ) ) - ( A ) ( B ) ]  (5) 
V~ oo 

Here the time dependence is induced by the atomic equations of motion, 

8 (t) = U ,(0B UN(t ) 
(6) 

U N (t) = exp( - itHN/h ). 

where the asterisk denotes the adjoint. The quantities A, B are fluxes whose 
particular form depends on the transport coefficient being considered. For 
example, the thermal conductivity )t is given by 

;t = ( 1 / 3 k T 2 ) ( ~  dt lim V - ' ( S ' - S ' ( t ) )  (7) 
J0 V--~ oo 

where S' is the "subtracted" energy flux 

S ' =  S - (h /0)P  (8) 

Here S is the total energy flux, (h/p) is the enthalpy per unit mass, and P is 
the total momentum. In terms of the atomic coordinates and momenta, S is 
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given by (22) 

si=Z +�89 ovo. 

Formulas of the type (4) also hold for the coefficients of viscosity and 
diffusion. 

Noncommutation of operators in quantum mechanics allows for the 
definition of several different correlation functions. ~23) Frequently the 
"canonical correlation" 

(A ; B(  t)) = fl - I fol3 dk  CAB( t - ih)~) (10) 

is used, and the Green-Kubo formula written as 

L~,  = fo~  d t ( A ; B ( t ) )  ( l l )  

In most cases of interest, Eqs. (4) and (11) yield the same result. Suppose in 
particular the system to be invariant under space inversion and time 
reversal (which is the case for the gas considered here). Then 

cA~(t) = O~oBC~B(t) 

= "rA'rRCAB ( -- t) (12) 

where o, ~- denote the parity under inversion and time reversal. The fluxes 
of interest (namely, the fluxes for energy, momentum, and particle number) 
in fact each have the same space and time parity, o = "r. It follows that 

CAB(t ) = C~B(-- t ) (13) 

and similarly 

Hence we have 

(A; ~(0)  = (A; B(-  0) (14) 

GB = ~ dtCAB(t),LAB = ~ 

and it follows immediately that LAB = L'~B. [This can also be seen by taking 
the zero-frequency limit in Eq. (6.18) of Ref. 23.] Here we will use the 
correlation CAB(t ) since it is somewhat easier to deal with than ( A ; B ( t ) ) .  

The expression (9) for S contains kinetic terms (which depend only on 
the momenta), and terms depending on the potential energy. The potential 
terms lead to collisional-transfer contributions to the thermal conductivity. 
The potential terms are usually analyzed ~13) by methods which are some- 
what different from those for the kinetic terms; as mentioned in the 
Introduction, here we will only consider the kinetic .terms. Thus we simplify 
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A and B to sums of single-particle functions of the momenta, 

N N 

Aw = ~ a(p,~), B N = ~ b(p,~) (16) 
a = l  a = l  

We have defined CAB (t) with the assumption that A, B are self-adjoint, 
as is the case for the fluxes of interest. For non-self-adjoint operators the 
natural choice is 

CAB(t) = lim V-I[(A*B(t)~ - (A*XB~] (17) 
V--~ oQ 

It is readily confirmed that CAB(0 ), considered as a functional of a, b, has 
the properties of an inner product. Hence we write it as (a, b), 

(a,b) = CAB(O) 

= lim V - ' I ( A * B ) - ( A * ~ ( B ) ]  (18) 
V~--~ oo 

This equation converts the algebra of single-particle operators into a 
Hilbert space, %. Considered as a functional of a and b, CAB(t) then 
defines a linear operator A(t) on %: 

CAB(t ) = ( a, A(t)b) (19) 

It is straightforward to show that CAA (t) is bounded by its initial value, and 
so A(t) is a contraction, 

[(a, A(t)a)l < (a, a) (20) 

As a consequence the Laplace transform 

A(s) = fo~ (21) 

exists throughout the right half plane Res/> 0. The Green-Kubo formula 
can be written as a limit for s---> 0, 

LA~ = lim (a, S_(s)b) (22) 
s--)0 

Henceforth a and b will be assumed to be self-adjoint. 
Following Zwanzig, (24) we define a memory function by 

_A(s) = Is + M ( s ) ] - '  (23) 

The collision operator I is then given by 

1 = lira M(s) (24) 
s---)0 

Our purpose now is to obtain a density expansion for I. Actually, however, 
we will work with the fugacity expansion, which is readily converted into a 
density expansion. 
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By writing out the sums in Eqs. (1) and (2), it is straightforward to 
obtain the expansion 

(a ,b )  = v--)~lim ( z V o /  V ) { T r t e - B n ' a b  + �89 - ~ H 2 -  e-~H~ 

+ ~.t (zVo) zTr3 e-~/43 - ~']e-~H" + 2e-~H~ A3B3 + " " " (25) 
g 

Here we have introduced 

z = e : / V  o, V o = h 3 ( 2 ~ m k T )  -3/2 (26) 

and H 0 denotes the free-particle Hamiltonian (regardless of the number of 
particles). In addition t~ has been used to denote a pair, and H~ is the 
Hamiltonian for a three-particle system in which only the pair / t  interacts, 

H~ = H 0 + V~ (27) 

Since the operators being dealt with commute with the total momen- 
tum, the energy of the center of mass can be factored out. Let P be the 
total momentum, 

N 

P = ~ p~ (28) 

and K u the center-of-mass energy, 

K N = P Z / ( 2 U m )  (29) 

For large volume the density of states for momentum is V / h  3 a n d  taking 
the thermodynamic limit term-by-term in Eq. (25) we get 

= ( z V o / h 3 ) { t r l e - ~ g , a b  + �89 -~K2 (a ,b )  

1 (z V0)2tr3e- BK3 • [e-t~h2 _ e-t~ho]A2B2 + 

The Hamiltonian operators in the center-of-mass frame have been denoted 
by lower case letters, 

hu = ~t~, - K~, h~, = t / ,  - K~ (31) 

The momentum P is treated as a parameter so h N acts on the Hilbert space 
for N particles moving in infinite space with fixed P; tr N denotes the trace 
associated with this Hilbert space followed by an integration over P. (In 
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other words, tr N means integrate over the diagonal matrix elements but 
leave out an overall momentum-conserving delta function.) 

A similar treatment of the time-dependent correlation function yields 
the expansion 

A(t)b) = (z Vo/h 3) ( trle-~H'ab + �89 -~x~ 

X [e-Bh2AzS2(t)B2 - e-ahoA2B2] + 1 (zVo)2tr3e-BX3 

X [e-~h3A3S3(t)B3 - ~_~e-Bh"A3S,(t)B3 

+2e-~h~ + . - .  } (32, 

Here we have introduced streaming operators SN(t ) defined by Blv(t ) 
= SN(t)B; S,(t)  denotes the streaming operator for the three-particle 
system in which only the pair/t interacts: 

S. ( t )B  3 = U~ (t)B3U,(t), U~(t) = exp( -  i t H J h )  (33) 

Since B N commutes with the total momentum, all of the time-displacement 
operators in (32) can be written with h's instead of H's. 

We next expand A. 

A = A  o + z A ~ + z 2 A 2 +  . . .  (34) 

On writing Eq. (30) with Ab in place of b and comparing with (32), we get 

Ao= 1 

tr~e-Bn'aA,b = �89 Votr2e-~n2d2( S2 - I)B 2 (35) 

trle-BH,aA2b= 1 V~tr3e-BX~[e-Bh~A3(S3_ 1)B3 

_ 2 e - a h .  A3(S ~ - I)B3] 
J 

_ �89 Votr2e-B&[ e-#h2 _ e-#h~ 2 

Here we have used the abbreviation (AIB2)(1,2) = (Alb)(1) + (Alb)(2). 
The transformed operator A has the expansion 

= Ao + zAl + zZA2 + "" �9 (36) 

It follows from the first of Eqs. (35) that S. 0 = s -I. Introducing the 
expansion into Eq. (23) we get 

M =  z M  I + z2M2 + . . .  (37) 
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where 

M 1 = __ s 2 ~ l  

M 2 = - sEjTk2 -I- S3ffk 2 (38) 

Finally the collision operator I is given by 

I = zI~ + z212 + . . .  (39) 

where 

I l = _ lims2~l 
s---,o (40) 

12 = - lim [s2A2 - s3.~ 2] 
S.---) 0 k 

If the above formula for I 1 is worked out, the result, as shown in the 
Appendix, is the linearized Boltzmann collision operator ~6) 

(/ ,b)(pl) = f dp w(p )f dU' go(g', g)[ b(p,) + b(p2) - b(p]) - b(p~)] 

(41) 

Here p], p~ denote momenta after a collision with initial momenta Pl, Pz, g 
and g' are the relative velocities before and after the collision, o is the cross 
section, and d~2' is an element of solid angle about the direction of g'. In 
addition, ~ denotes the Maxwell-Boltzmann distribution function, 

ep = (2~rmkT)-  3 / 2 e x p ( - p 2 / 2 m k T )  (42) 

The last term in Eq. (35) for A 2 gives a contribution to 12 which can be 
expressed immediately in terms of I~. Hence we write 

12 = I~ + I~' (43) 

where I~' is obtained from the last term in Eq. (35). Using the first of Eqs. 
(40) we get 

trle-~U'aI~'b = - �89 Votr2e-~r2[ e -~h2 -- e-l~h~ (44) 

The remaining part, I~, is determined by 

I~ = - lim [s~A~ - s3A 2] (45) 
S ----~ 0 L 

where A~ is the Laplace transform of the operator A~ determined by 

trle-~naaA'2 b = ~. VZtr3 e-t3K3 

•  ~_.~e-Bh,'A3(S.- I)B3] (46) 

As is well known, (1~ divergences occur in the density expansion for 
the collision operator and it is necessary to perform a resummation of ring 
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diagrams if the expansion is carried to higher order. However, the diver- 
gence first occurs (in three dimensions) at the next order beyond that 
considered here, and plays no role in our discussion. 

3. T W O - B O D Y  P A R T  

For small s, A~ is singular as s -2 I  1. Hence the last term in Eq. (45) is 
singular as s -1. It works out that A[ has an s -3 singularity such that the 
combination of terms in (45) has a well-defined limit. In order to break the 
calculation down into parts, it is convenient to write 

I~ = F + G (47) 

where 

F =  - l i m [ s 2 A ~ - s - ' I ~ ]  
s--~O (48) 

G = lim [ s3A~-  s - l I ? ]  
s---~0 

Each of the above limits exists separately so this division of I~ makes sense. 
The operator G involves only two-body dynamics and so its analysis is 

relatively straightforward. The remainder of this section will be devoted to 
G. 

Let G be rewritten as 

1 l i m s - , ( [ s 2 S . , _  i1][82~1 h- I , ]  + [s2Al + l l ] [ S 2 A i -  I , ]}  (49) G = ~ s--,0 

Using Eq. (40) for 11, we get 

G = I IU + U11 (50) 

where 

U =  -sl irn [sA,  + s - ' I , ]  (51) 

As remarked in the Introduction, the large t divergence is weakened by 
binding. In particular the bound-state contribution to A~(t) is a bounded 
function of t. (Actually it contains terms which oscillate with the character- 
istic molecular frequencies.) Hence the bound-state contribution to A1 is 
singular for small s only as s -  1, and we may separate U into the two parts 

V = Y + V (52) 

where 

Y =  - lims(AO6, , 
s---~O 

V =  - lim [S(J~l) f %" S- ' I ,  ] 
s-->0 

(53) 



268 McLennan 

Here the subscripts b a n d f  denote the bound and free (i.e., unbound) parts. 
Our concern is only with Y, and V will not be considered further. 

It is now necessary to work out AI in detail. Equation (35) for A s can 
be rewritten as 

(a, A,b)o= ( V2/2ha)tr2e-~KA2[ u~(t), B2]u2(t)e -eh2 (54) 

where brackets [ , ] denote the commutator and 

u2(t ) = e x p ( -  ith2/h ) (55) 

For brevity K has been written instead of K 2. In addition brackets ( , )0 
denote the Maxwellian average, 

(a, b)o = f dp q~ab (56) 

The extraction of the bound-state part of A~ amounts to picking out the 
contribution of the eigenvalues of h 2. This can be done directly from Eq. 
(54) but we will follow an approach which will be useful below, and which 
is also applicable to the evaluation of V. 

The last two factors in Eq. (54) can be written as 

u 2 ( t ) e  -gh2 = - ( l / 2 ~ i )  fcdwR2(w)exp(-  fl - it/h)w (57) 

Here R 2 is the resolvent for h2, 

g2(w ) = (h 2 - w)- '  (58) 

and the contour C encloses the spectrum of h 2. We assume the latter to 
consist of a continuous spectrum along the positive real axis, plus a finite 
number of eigenvalues (corresponding to bound states) at - e  i, i = 1, 
2 . . . . .  with e i > 0. 

Equation (57) is to be introduced into (54) and the Laplace transform 
taken. We suppose that hs > Im w on C so that the time integral can be 
taken inside the contour integral. The result is 

(a, fi.,b)o= - ( 1/2o/8 fr2h2) acdw e- -'area 2 [ RE(W - iX l, B2 ] R2( w ) 

(59) 

where we have set ~ = hs. The transition operator t(w) is defined by 

R2(w ) = go (w) -  Ro(w)t(w)go(w ) (60) 

where R o is the noninteracting resolvent, 

R0(w ) = (h 0 - w) -~ (61) 

Using the fact that R o commutes with A2, B 2, and K we can reduce Eq. 
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(59) to 

(a, Aib)0 = - ( V~/8~r2h2)fcdW e -~Wtr2e -BXRo(w)Ro(w - iX)A 2 

• [ t (w  - i~), B2]Ro(w)Ro(w - i~)t(w) (62) 

Let q denote the relative momentum 

q = �89 - P2) (63) 

In momentum representation Ro(w ) amounts to multiplication by 

ro(w, q) = (u - w) - I  (64) 

where u is the kinetic energy of the relative motion, 

u = q2 /m  (65) 

The transition operator is represented by the kernel t(w, q, q'): 

( t (w) f ) (q )  = f dq' t(w, q, q')f(q') (66) 

With the matrix elements written out, Eq. (62) becomes 

(a, Alb)o = - (  vg/g~r2h2) f~ dw e-BW f da aqdq' e-/~KA2(e)) 

• [ B2(67 ') - Bz(~ q)r0(w, q')t(w, q', q)r0(w - i~, q') 

• ro(w - iX, q) t (w - i~,q, q') (67) 

Here we have used 6) to denote the pair Pl, P2, and ~ '  denotes p], p~ which 
are determined by 

p = p , =  + 

(68) 
q' = �89 (P'l - P~) 

As a function of the complex variable w, the transition operator has 
singularities which are exhibited by the formula 

t (w,q ,q ' )  = ~,, (u + e,)(u' + el) ~Pi(q)f/i(q') + / ' ( w , q , q ' )  (69) 
i e i + w  

The first term contains the bound-state poles at w = - ei; ~Pi denotes the ith 
eigenfunction and it is assumed (in case of degeneracy) that the set 4'i is 
orthonormal: 

f dq ~,(q)~j(q) = 8/j (70) 

The function f is analytic in w except for a branch cut along the positive 
real axis, and has finite limiting values as w approaches the branch cut 
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from above or below. (These statements regarding t have been proven by 
Faddeev subject to certain reasonable restrictions on the potential energy.) 

Since the poles in (69) are separated from the branch cut, their 
contribution to the integral (67) can be evaluated immediately to give the 
bound-state contribution to S_1: 

(a,(~k,)bb)o= -- i (  V2o/4 h2)f dP dqdq' e-/~rA2(e2) [ B2(62 ') - B2(62) ] 

• ~ e/Je'*i(q')~i(q)(u + e i + iX) - l  
i 

X ( u ' +  e i + i X ) - I t ( - - e i -  iX, q,q') (71) 

(Note that the factor t ( w -  iX, q,q') in Eq. (67) is analytic within the 
contour.) We write the remaining t matrix in the form (69), using a 
subscript j to label the poles. In the limit X-~ 0 all terms remain finite 
except for those with ej = e i which contribute a factor ( -  iX)- 1. The result 
for Y is 

(a, Yb)o= - (  V~/2h 3) • e'e' f dP dqdq' e - ' rA2(P)[  B2(e)' ) - B2(~) ] 
i 

X +,(q')~(q) E +j(q)~(q')  (72) 
j / i  

Here the notat ionj / i  means that the sum is to extend over those values o f j  
for which ej = e r 

Equation (72) can be rewritten as 11 

(a, Yb)o=~ig i /dPq~m(e)[ (A2n2) i i - j~ / i (A2) i j (g2) j i ]  (73) 

Here tpm denotes the MaxweU-Boltzmann distribution function for the 
molecule, 

q0 m = 2-3/2( Vo/hS)e-BK (74) 

The brackets ( )0 denote matrix elements with respect to the set ~i, e.g., 

(a2)~j = f dqA2~(q)~j(q) (75) 

Of course in this and similar formulas A 2 is to be considered as a function 
of P, q rather than of Pl, P2, and the matrix element is a function of P. The 
factor K i is the reaction constant, 

K i -- 21/2Vo e€ (76) 

|l In Ref. 15 the equation corresponding to (73) was written only for the special case of 
nondegenerate energy eigenvalues. 
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In the expansion (39) Y is multiplied by z 2. The resulting combination 

n i = Ki z2 (77) 

is just the density of molecules in the state ~b i. [Equation (76) is valid for a 
Boltzmann gas. Usually the reaction constant is evaluated with quantum 
statistics, and the formula (76) then has 23/2 in place of 21/2.] 

We return briefly to the operator I~' defined in Eq. (44). This equation 
can be rewritten as 

(a,I~'b)o= -21/2Vo f ar'w,.(e) f dq[e -/~h2- e-/~h~ (78) 

This can be reduced further by equilibrium techniques such as are used to 
derive the Beth-Uhlenbeck formula. The bound-state contribution, (Ij')b, 
can be obtained immediately by projection onto the eigenvalues of h 2. The 
result is 

(a,(I~')bb)o = -  Kif aI ' ce , , ( e ) (AJ ,  B2>,i (79) 

This has an evident similarity to the result (73). 

4. T H R E E - B O D Y  D Y N A M I C S  

The evaluation of F involves three-body dynamics. In this section the 
pertinent results for the three-body problem, as developed particularly by 
Faddeev,~ 14) will be briefly summarized. 

Let 62 now denote a set of three momenta pl, P2, P3. The total mo- 
mentum is 

P = Pl + P2 + P3 (80)  

while the kinetic energy and center-of-mass energy are 

E~, = (_p2 +_p~ + p~)/2m, K = P2 /6m (81) 

A pair can be labeled by the two particles in it or by the third particle. 
Thus for example a = 1, 2 and a = 3 can both be used to denote the pair 1, 
2 as well as particle 3. Let q~ be the relative momentum of the pair a, so for 
example 

q,2 = q3 = �89 (P] - P2) (82) 

In addition, let k~ denote the relative momentum of particle a with respect 
to the pair a, e.g., 

.~_ _ _  I p k12 k3 = ~P3 3( l -t- P2) 

= P3 - �89  (83)  
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We also introduce the kinetic energies of the relative motion of the pair a, 
and of particle a with respect to pair a, 

u~ = q E / m ,  ~ = 3 k E / 4 m  (84) 

It follows that 

E~ - K = u I + x I = u 2 + ~2 = u3 + ~3 (85) 

The three momenta Pl, P2, P3 can be expressed in terms of P and any pair 
q~, k~; furthermore 

d ~  = dpldp2dp3 

= d P d q ~ d k ~  (86) 

We will frequently use q, k to denote any of the equivalent pairs q~,k~, and 
u~ + x~ will be abbreviated as u + x. 

Let R ( w )  be the resolvent for the three-body Hamiltonian in the 
center-of-mass frame, 

R ( w )  = (h 3 - w ) - '  (87) 

The noninteracting resolvent, now for three particles rather than two, will 
again be denoted by Ro(w ). Its kernel (in the Hilbert space for relative 
motion) is 

Ro(w, kq, k'q') = ro(W, kq)6(k - k')6(q - q') (88) 

where 

r0(w, kq) = (u + K - w) -1 (89) 

In addition let R,~(w) denote the resolvent for the three-body system in 
which only the pair a interacts, 

R, , (w)  = (h,~ - w ) - '  (90) 

A three-body transition operator T can be defined in analogy to Eq. 
(60) by 

R = R o -  RoTR  o (91) 

However, T contains disconnected contributions which arise from purely 
two-body collisions. The connected transition operator r is defined by 

R = R o - R o ~  T~R o -  RoTR o (92) 

Here T~ satisfies 

R e = R o - RoToR o (93) 
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and is related to the two-body transition operator defined in Eq. (60) by 

T,,(w,  kq,  k 'q ' )  = 8(k, - k~)t(w - K~,q,,,q',~) (94) 

Clearly 

r - T - ~ T~ (95) 

Let M~B be defined by 

M,~ B = 8,~BV,~ - V,~RVI~ (96) 

where V~ is the potential energy for the ath pair. It is straightforward to 
show that 

T = ~ M,~ B (97) 
a,fl 

In addition we define 

Then 

W~B = M,~ - 8~B T~ (98) 

r = ~ W,~, (99) 
a,fl 

As shown by Faddeev, M~B satisfies 

= 8o L - L R o  (lOO) 
" /Ca 

Iteration of this equation yields the binary-collision expansion, 

M,~ B = 8,~/~T,~ - T,~RoTB(1 - ~,~ ) + L R 0 ~ '  r ,  Ror~ . . . .  (101) 
# 

Here the prime on the sum means that no two consecutive subscripts are to 
be the same. 

Of primary interest for our purposes is the analytic structure of R ( w ) .  
Since it is the resolvent of a self-adjoint operator, it must be analytic if w is 
not on the real axis. One expects a branch cut along the positive real axis; 
this is associated with the energy u + x for the motion of three free (i.e., 
unbound) particles. Superimposed on this is another branch cut extending 
from - - e  i to oo; this cut corresponds to the energy x~ - e i of bound-pair a 
plus the third particle. Three-body bound states will introduce poles into 
R(w); however, these need not concern us here since they can be shown to 
have no effect on the final form of the collision operator. (In the three-body 
problem a triatomic molecule will have nothing left to collide with.) 

To describe the analytic structure in detail, note that from Eqs. (98) 
and (101), W~B contains factors T~ and T~ on the extreme left and right, 
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respectively. Each of these can be separated into bound-state and contin- 
uum contributions according to Eq. (69). The result is a division of 14z~r 
into four parts (called components by Faddeev): 

W ~  (w. k'q'. kq) = W~ (w. k'q'. kq) + ~ .  (w  + e i - ~')  -1WIi.B (w.  k'q'. kq) 
i 

+ ~ ( w  + ej - x # ) - l W ~ # i ( w . k ' q ' . k q )  
J 

+ ~ ( w  + e i - x 's)-~(w + ej - x ~ ) - l W ~ i 3 j ( w . k ' q ' . k q )  
ir 

(102) 

The coefficients W~ . . . ,  W~i,#j, as functions of w, are analytic except for 
a branch cut on the real axis, extending to the left as far as the lowest of the 
energies - e  i. They have finite limiting values as w approaches the bound- 
state poles at ~ - ~ and K' s - e i. 

The dependence on the internal variable q for a bound pair can be 
completely factored out, and W2i 3 . . . . .  W3~ take the form 

/ / I W2i., (w,  k' q'. kq) = (u s + ei)~i(qs)As~,, ~ (w, k2. kq) 

- -  2 t t W~.Bj(w.k '  q ' . kq)  = (u/z + ej)qj j (qp)As.Bj(w.k q .k , )  (103) 

3 / / - -  3 t Ws162 j (w.  k'q'. kq) = (u s + ei)(u , + ej)~/i(q~)~/)(qp)Asi.~j(w, k~. k,)  

Self-adjointness of the Hamiltonian implies a certain behavior under 
complex conjugation. We note in particular that 

~(w, kq, k'q') = ~-(~,k'q',kq) 

W~.s/(~, kq. k'q') 

W~.si (w. kq. k'q') 

It can also be shown that 

~ 1  t p ~i,/~ (w, k q ,  kq) = 

- - 3  W~i.~ j (w. k'q'. kq) = 

These equations imply that 

A-2i,# (w, k~, kq) = 

(104) 

005) 

(106) 
AT~i.py ( w. k. . k , ) 3 - . = ABj,e , i (w,k~,ks  ) 

The A coefficients, when evaluated on the energy shell, are essentially 
reaction and scattering amplitudes for the various processes. This identifica- 
tion is provided by the S matrix, which has been worked out by Faddeev. 
Let a, i, k~ denote the state in which pair a is bound with wave function 
~i(qs),  the third particle having relative momentum k s. Similarly, let a state 
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with no bound pairs be labeled by its momenta, say k'q'. Collision-induced 
dissociation is a transition a, i, k ~ k ' q ' ,  and the S matrix for this 
transition is 

�9 __) t ~ ~ D ~ , S(a ,  z, k a k q )  = -2Tri6(u' + - - K , ~ + e i ) T  ~ (k q,k~) (107) 

where 

Ti~ (k'q',k,~) = ~ [ A2  ' , ,8,,~i (K,~ - e~ + iO, k q ,k,~) 

+~2 , 3 �9 , ] ~(q~)ABj . . i (K  a -- e i + ,0, kB, k.) (108) 
J 

The S matrix for molecular formation is 
�9 ,~ i F t S(kq--> a,/,k~) --- - 2 7 r i S ( u  + tr - ~ + e , ) T ~  (k~,kq) (109) 

where 
[- 

T/P(k~, kq) --" ~ ~ 1 t ,, A a i , B ( K e ~  - -  e i + i0, k~,kq) 
B L 

' )] (110) r -- e, + /0, kto,k  
J / 

For atom-molecule scattering (without rearrangement, but including inelas- 
tic collisions) the S matrix is 

S ( ~ ,  i, ko -~ ~, j ,  k;) = 6/j6(ko - k'o) - 2~i6(K~ - e~ - ~; + ej)Tjf(k'o, ko) 

(111) 

where 
S , Tji (k~, k~) 3 �9 , = A ~ j , . i ( x  ~ - e i + t0, k~,k~) (112) 

For a rearrangement collision we have 

S(a,i,k,~---~ t~, j ,k '~)  = -2~r i8 (~  - e i - x' B + e))Tf(k~,k~) (113) 

where 
R Tji (kB,k~)= A~j,,~i(t~,~ - e i + i0, k~,k~) (I14) 

5. BOUND-STATE CONTRIBUTIONS 

We now return to the evaluation of F, given by the first of Eqs. (48). It 
is necessary to work out the operator A2, which is determined by Eq. (46). 



276 MeLennan 

A straightforward calculation along the lines of Section 3 shows that 

(a, fi,'2b)o = - ( V3o/24~r2h2) fcdw e-~WX(w) (115) 

where 

X(w) = tr3e-l~KA3{ [ R(w - i ) t ) ,B3]R(w ) - ~ [ R~(w - i)t),B3]R~(w) } 

(116) 

Let Eqs. (92) and (93) be substituted into this expression. The leading terms 
give no contribution since R 0 commutes with A 3, B3, and K, and the result 
is 

X ( w ) = tr3e - BlCA 3Ro R 0 

+ Z [ L-, B3]RoRo  + E' [ L-, 83] RoRor  } (1 17) 
ix ot ,~ 

Here for brevity we have written R 0, ~, T~ when the argument is w, while 
R o , ~"-, T ~  have w -  iX for their argument. Actually the last term above 
vanishes. This can be seen by writing out the matrix elements, which gives a 
factor B3(~ - B3( 62); the requirement a =P 13 combined with conservation 
of momentum leads to the restriction ~ '  = ~ .  Hence we are left with 

X(w) = tr3e-BKA3RoRo{ ['r + ['r-'B31R~176 T~ 

+ 2 [r:,B3]RoR0,} (ll8) 

Let the contour C consist of two lines above and below the real axis, 
with w -- E + ie and w = E - ie'. It is necessary that e be less than X and 
we choose e = �89 = �89 Along the lower part  of the contour e' can be held 

fixed when the limit s ~ 0 is taken. Then X(E - ie') remains finite and, as 
seen from Eq. (48), gives no contribution to F. Thus we may calculate F 
from 

- l i m  (eZ(2V3/3h4)( ~176 dEe-/3EX(E + & ) -  (h/2e)(a,I~b)o 1 (a, Fb)o= 
r  ~ J - - -  e o ) 

(119) 

Here e o is chosen so that the path of integration extends to the left of all 
eigenvalues, so e 0 is greater than any of the e i. (A minus sign occurs 
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because the upper part of the contour is traversed from right to left.) 
Written out, X(E + ie) is 

X(E + ie)=f dedkdqe-  A3( ')f dk 'dq ' [  B3(~ ') - B3(P)] 

• {I,(e + &,k'q',kq)12 + r ( E -  i~,kq, k'q') 

x Z L ( e  + & k'q',kq) + N L ( e  - i ,kq, k'q') 

• r ( E  + &,k'q',kq)} (120) 

Now we focus on the bound-state contributions. These have a weaker 
singularity such that the first term in Eq. (119) gives a finite limit by itself. 
Hence we write F as 

F = J + C  (121) 

where J and C are, respectively, the bound and free parts. In particular J is 
given by 

(a, Jb)o= -(2V3o/3h4)limc2{ f ~  dEe-~eX(E + iQ} (122) 
~ - - ~ 0  - -  e0  b 

and C is the remainder. 
In Eq. (120) let ~- and T~ be replaced by their decompositions into 

bound and free parts as given by Eqs. (69), (94), and (102). The result is a 
sum of terms containing up to four bound-state poles. Terms depending 
quadratically on the first term in Eq. (102) contain no poles, while the last 
term in (102) is a four-pole generator. A nonvanishing result is obtained 
only when the factor e 2 in Eq. (122) is canceled by a singularity of 
X(E + &). Such singularities include those at E = u + K and E = u' + ~' 
associated with free-particle motion. Of the bound-state singularities, an 
important case occurs when a pole, say (E + ic - r'~ + e i ) -  I, is paired with 
its conjugate, ( E -  ic - ~ + ei)-1. The combination of singular factors is 
then 

[(u + r -  E )  2 + e2]-~[(u  ' + K ' -  E )  2 + e2 ] -~ [ (E  - ~'~ + e,)2+ e2] -1 

(123) 
The three singularities cannot be realized simultaneously since 

u ' + x ' =  ' ' ' -  (124) U a + K a > g~ ei 

Thus for E > ~'~ - e i the first two factors in (123) can become singular, 
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while for E < u' + x' only the first and last can. Hence we obtain 

limr + s -  E ) 2 +  r "[-K'-- E ) 2 +  r -1 
r L" 

x [ ( ~ - ~ ' o  + ei) 2 + r 

----- '/r2(U; q- e i ) - 2 ~ ( u  q- K - -  E ) [ ~ ( u '  q- t (  - E )  q- 8(E - ~'~ + e,)] 

(125) 

The pairing of ( E  + ie - xt~ + e j ) -  1 with (E - ir - x/~ + ej)- i is covered by 
the formula 

limr + x -  E) 2 + e2] - ' [ (u  ' + x ' -  E)  2 + s - I  
r L - 

>< [ ( E -  O + ey)2 + r - '  

= ~r2(u/~ + e y ) - 2 6 ( u ' +  x ' -  E ) [ 6 ( u  + ,~ - E )  + 8 ( E  - 0 + ej)] 

(126) 

while the four-pole case is handled by 

lims + ~ -  E ) 2 +  s 
,-,0 L (u' + ~' - e )  2 + r  

X [ ( E -  K' a .-I-ei)2.-t-s e.)2.,[- s - ' 7  

= ~r2(u'~ + ei)-2(u/3 + e j ) - 2 [ 8 ( u  + ~ - E ) 8 ( u ' +  ~ ' -  E )  

+ 8 ( E -  ~'o + e i ) 8 ( e -  ~B+ 0 ) ]  (127) 

The terms above containing the product 8(u  + ~ - E ) 8 ( u '  + ~' - E )  do 
not yield bound-state contributions, and so are to be included in C rather 
than J. 

Actually it can be shown that the only bound-state contributions are 
those which arise from the above-mentioned pairing. A combination of two 
different poles, such as ( E  + ir - ~" + e l ) - I ( E  - ir - ~1~ + ey)- l ,  is not 
singular enough to give a nonvanishing result. Roughly speaking, the point 
is that r 2 + r approaches a delta function, but s + ir  _ ie)-1 
approaches zero if x 4= y.  

The last two terms in Eq. (120) can be neglected insofar as J is 
concerned. The operators T,~ contain a factor 8 ( k ~ -  k~) which implies 
x, = ~'. Inequalities like (124) then prevent the bound-state singularity 
from coinciding with either of the free-particle singularities. In other words, 



Triple-Collision Operator for a Quantum Gas 279 

these terms would correspond to the transition of a pair between free and 
bound states without interaction with the third particle, and this is prohib- 
ited by conservation of energy and momentum. Hence for the present 
purposes we may replace X by 

x ' (  E + i,) = f dP dk dq e-  'e:A 3(~ f dk' dq'[ B3(~ - B3(~)] 

• I (e + ic, k'q' ,kq)l  2 (128) 

We now substitute Eqs. (99) and (102) into the above expression for 
X',  retaining only those terms in which bound-state poles pair off in the 
manner just described. The result for J can be written as a sum of three 
terms 

j = j o  + j r  + j c  (129) 

The first of these arises from a bound-state pole at E = x a - ey combined 
with the free-particle singularity at E = u' + x' and corresponds to dissocia- 
tion of a molecule. The second is due to a free-particle singularity at 
E = u' + x' combined with E = x'~ - e i and describes molecular formation. 
The last one occurs when the bound-state singularities in initial and final 
states coincide at E = x ~ - ~ .  = x'~- ei; this operator describes a tom-  
molecule collisions (including rearrangement collisions if a ~ fl and inelas- 
tic collisions if e i ~= ej). 

In detail, j o  is given by 

(a, jDb)o = - ( 2  V3/3h4)~imE2 f d P  dkdqe-~KA3(@)  

• f dk' dq' [ B3(a) ') - B3(a ) ) ] f  d E e - B E [  (u + x  - E )  2 + E2] - l  

X[(Ut+ K'-- E)2q- r -I 

• ~ ~ ( E .  + i r  x~ + ~ ) - l [  W~Bj(E + ir 
J 

+ ~(Ei + ic - ~ + ei) - I  W~,Bj(E + ic, k'q' ,kq)] 2 

(130) 
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Here the integration over E is restricted to the range x'~ - e i < E < u' + ~' 
in order to pick out the dissociation process of interest. (If the range of E 
covers u ' +  ~:' a contribution to C is obtained, while if it covers x'~ - e/ a 
contribution to jc ,  to be discussed below, is obtained.) As discussed above, 
we need retain only those terms in which the pole (E + ic - x~ + ~) -  i is 
paired with its conjugate. Using Eq. (126) we get 

(a,Jnb)o= 1 f dp,dp2dp3~p(p,)ep(p2)cp(p3)A3(o~) ~ e,(~.+~) 

X f dk'dq'[ B , (~ ) -  B3(~')]8(u '  + x ' -  x/~ + ej)R~(k'q',kq) 

(131) 

where 

R~ (k'q',kq) = 2rr2hS(u~ + ey) -2 

• ~ , E [  W~#k(x~-ej + iO, k'q',kq) 
~/j a L 

p - 1  3 l 2 + Y , ( u o  + e,) - ej + / 0 , k ' q ' , k q )  ] i 

(132) 

(We have again used the notation k / j  to indicate a sum over values of k 
for which e k = ej.) 

Use of Eqs. (103) and (108) yields 

2 
R n ~ k  (q~) T~ (k'q', k/~) (133) ,j (k'q',kq) = 2~r2h 5 

k//g. 

The operator j n  can be extracted from Eq. (131) with the result 

(jnb)(P,) = f dpEdp3qg(PE)CP(P3) E f dk' dq'[ B3(~ - B3(eY')] 
/~,j 

• 8(u' + ~' - ~;, + ej)R~(k'q',kq) (134) 

In a similar way J F is found to be 

• ~ 8 ( u  + x - x~, + ei)RZ(k'q',kq) (135) 
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Here R f / is  given by 

RF(k'q ', k q ) =  2~r2hS(u~ + e,) -2 

Wdk,p(x~ - e i + tO, k q ,kq) 
k/ i  p 

3 , e i  iO, k'qt, kq) ]2 "4- E ( U B  + ~ -  -ei)-lw~k,,J(Ka - + 
J 

= 2~r2h5 ~'~ ~kk(q') T2(k ' ,  kq) 2 (136) 
k/i 

Finally, J c is found to be 

(JCb)(P,) = f dpjp39)(p~)q)(p3)f dk '  dq'[ B3(~ ) -- B3(6~ ') ]'ff] N eP( '+~) 
ai f l j  

C ! / • ~(~" - e i - x# + ej)R~,,~j(k q ,kq) 

where 

C / / R,,,Bj(k q ,kq) = 2~r2hS(u; + ei)-2(ua + ej) -2 

• k~/i ~ 3 , i0, k'ql, kq) 2 W;,k,B~ (K~ --  ei + 

(137) 

(138) 

If a = fl this reduces to 

2 
t - -  S i R,~,x,j( 'q," kq) = 2~r2h5 k/i  ~ '  ~g(q~')~1(q')T/~t(k'~'k'~)l/j (139) 

while for a ~ fl we have 

2 I 
C t i ] t - -  R R,i,pj(k q ,kq) = 2~'2h 5 ~ ~k(q ,~)~ l (qB)T~t (k ,~ ,k~)  (140) 

I k / i  I / j  

6. A T O M - M O L E C U L E  COLLISION OPERATOR 

The form for J obtained in the previous section involves all three- 
particle momenta. However, the integration over the internal variables q for 
a bound pair can be carried out. The result is a binary atom-molecule 
collision operator in which the molecule is characterized by its total 
momentum and internal state (actually by a density matrix for its internal 
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state). This form also displays the connection with the reaction and 
scattering amplitudes defined by the S matrix. 

Let j c  be written as the sum of two terms 

j c  = j s  + j n  (141) 

where j s  and jR are obtained from the terms in Eq. (137) with a = fl and 
a 4 = fl, respectively. Thus j s  corresponds to ordinary scattering and jR to 
rearrangement collisions. Consider first the term with a =/3 = 2, 3 and i, j 
held fixed. Let this operator be denoted by J,]. : 

(J/)b)(p,) = f dp2dp3w(pz)w(p3)f dk[3 dq~3[ B 3 ( ~ ) -  B3(GY')] 

C t t • el~("23+eJ)8(~'93- e i -  ~23 + ej)R23i,23j(k q ,kq) (142) 

Clearly J/) describes collisions between a particle, labeled 1, and a bound 
pair, labeled 2, 3, with the bound pair changing its energy from ej to e i. The 

C p dependence of R23i,23 j on q23 and q:3 is given explicitly in Eq. (139). To 
carry out the integration over q23 we make the change of variables P2,P3 

P23, q23, where P/3 = Pz + P3 is the total momentum of the molecule. We 
have 

~p (pz)ep (p3) e ~23 = 23/2V0 h - 3~r n ( P 2 3 )  (143) 

where %, is the distribution function (74). This gives 

( J J b ) ( p , )  = 2rjh-3f dP23rm(P23)f dk 38(  3- e i -  K23 "1- ej) 

X fdq23dq'23 [ B3(~ ) - B3(e2 ') ] R2Ci,23j(k 'q', kq) (144) 

where K/is the reaction constant (76). Let f~ be the scattering amplitude, 

f}(gi3, g23) = 2~r/thT/}(k~3, k23) (145) 

Here /~ = 2m/3 is the reduced mass for the atom-molecule system, and 
g23, g23 denote the relative velocities before and after the collision, 

g23 = k23/,tt, g23 = k23/P" (146) 

The scattering amplitude has been normalized so that the cross section is 
given by 

o(g, j ~ g', i) = (g ' /g ) l f ,  j(g', g)[ 2 (147) 

Using Eq. (139) we get 

RCi,23j(k' q',kq) = (h3/2b t2) ~ ~ ~,(q23)+k(qz3)fm(q23)~,,(q23) 
k l /  i m n / j  

• f~m (g~3, g23) f f  (g~3, g23) (148) 
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The earlier notation has been extended so that kl/i  means to sum over 
those values of k and l for which e~ = e l = e i. When Eq. (148) is substituted 
into (144) the result can be put into the form 

= f ~ , , , f ~  (J/)b)(p,) Kjf  dP23cPm(P23)f d~'23 X X " "" 
kl/i mn/j 

X ( [ b ( p l )  - b(p])]~kl~mn + /3mn(P23)~kl- t~lk(Pt23)~mn } 

(149) 

(#b)(p,) = ~ f aa23r f 
X [b(pl) + fljj(P23) 

Consider next the terms in Eq. (137) 
3. The manipulations leading to Eq. (153) 
way since p~ is not integrated over so we 

d ~ 3  ' ._.._> , �9 g23 ~ (g23, J g23, l )  

- b ( p ] )  - f t . ( P 2 3 ) ]  (153) 

w i t h a = f l = l , 2 ,  a n d a = / 3 = l ,  
cannot be carried out in the same 
consider 

(a,Jo2.b)o= f dp, dp2dp~w(pOcp(p2)W(p3)a(p,) f dk' dq'[ B3(e))- B3(P')] 

X Z efl(u~+e') ' c , , :'~(tc a -- e i -- K a + ej)R,~i,,~y(k q ,kq) (154) 
asa2,3 

Here/3ran denotes the matrix element 

flm,,(P23) = f aq23[b(p2) + b(P3)]~m(q23)G,(q23) (150) 

and d ~ 3  is the element of solid angle about the directions of g23" For 
simplicity the arguments g~3, g23 of the scattering amplitudes have not been 

written out. Conservation of energy is expressed by 

g~ = g23 - (2//,)(~. - e,) (151) 

If ~. is greater than ei, there is a threshold condition 

g23 > (2//~)(~ - e,) (152) 

For fixed Pl this is a restriction on the range of integration for P23, but for 
simplicity this restriction has not been indicated explicitly in Eq. (149). 
Similar restrictions will be left implicit below. 

The result (149) is the linearized form of the Waldmann-Snider 
collision operator for the rate of change of the distribution function for 
atoms, due to their collisions with molecules. The matrix tim,, need not be 
diagonal, but only elements with equal energy, e m = en, occur. If the energy 
levels are nondegenerate, or if tim. is diagonal, the collision operator 
reduces to the form due to Wang-Chang, Uhlenbeck, and deBoer: 
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Using Eq. (139) we can reduce this to 

f : ' '  (a,j2b)o= Kj dplaP23cp(pl)epm(P23 ) d~z3 g23 E E ~ -s 
kl/i mn/j 

X (6kfYmn(P23) -}" amn(P23)[~kl (b(p l )  - b(pPl)) - fltk(P~3)] ) 

(155) 
Here the particles have been relabeled so that the bound pair is again 2, 3 
and we have introduced the matrix elements 

am. (P23) = f dq23 [ a (Pz) + a (P3) ] if,,, (q23)~P,,(q23) 
(156) 

ym,,(P23) = f dq23[ a(P2) + a(p3)][  b(p2) + b(p3)] ~.,(qE3)tP,,(q23) 

The operator j s  is the sum 

j s = ~ [ j j  + jij2] (157) 
tj 

For rearrangement collisions there are again basically two different 
operators which are distinguished by whether particle 1 is included in the 
bound pair or not. Consider first the case when it is not, so/3 = 2, 3 and 
take, say, a = 1,2. Call this operator Jo?: 

(J0b)(Pl) = fdp2ap3w(p2)w(p3)f dk' dq'[ B3(~)- B3('~')]e #("23+~) 

• 8(K~2 - e i - x23 + ej)RlC2i,23j(k'q',kq) (158) 

A straightforward calculation along the lines given above yields 

=~. Kj f f t t f/cm(g12,g23)fln (g12,g23) (J3b)(P,) dP23(~m(P23) d~2lZgIEE E " ' " ' 
kl/i mn/j 

• {~,Sm.[b(pl)- 6(p~)] + ~,/3m.(I'23)- ~J,~(Ph)) 
(159) 

The rearrangement amplitude has been defined by 

R p f~ (g,2, g23) = 2~r#hT/; (k',2, k23 ) (160) 

The result (159) is a fairly obvious modification of (149). 
The operator j 3  counts twice since it is also obtained when/3  = 2, 3 

and a -- 1, 3. A different operator occurs if, say,/3 = 1, 3; we include both 
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a = 1, 2 and a = 2, 3 and define ./4 by 

(a,Ji:4.b)o = f dp, dpedp3~(p,)~(p2)ep(pa)a(p,)f dk' dq'[ B3(~ ) - B3(~') ] 

C / t X eB(Ul3+~)(~(K~2- e i - x13 + ej)R12i,13j(k q, kq) 

C t r + ~(g23- ei- KI3 + ej')R23i,13j( k q ,kq)) (161) 

After some manipulat ion this can be reduced to 

(a, Jij4b)o= Kj f dpEdPl3cp(p2)~pm(el3 ) 

• f E Y, " ' -R , ' /kin (g12, gl3)j~n ~ (g12, g13) kl/i mn/j 

x {a,n,~(Pl3)[Skt(b(p2)- b(p~)) - fltk(P;2)] + (~kl'Ymn(Pl3)) 
(162) 

The same operator also arises from the c h o i c e / 3  = 1,2 with a --- 1,3 and 
a = 2, 3. Thus the total contribution to j R  is 

JR=2~.[J~+J04. ] (163) 
/j 

The reduction of jn  follows similar lines. It is found that 

jn  = ~ I j r  + jj6] (164) 
j" 

where jj5 is defined by 

(Jfb)(pl)=4~rZhEKjf dP23%(PE3) f dk'dq'8(u'+ x ' -  x23 + ej) 

X E TO (k'q', k23 ) ~/D (k'q', k23 ) 
kl/j 

X (Sk,[b(Pl) -- b(p;) - b(p~) - b(p~)] + flk,(P23)) (165) 

In addition, jj6 is determined by 

(aj:b)o= 4Ch2K: f dPldP23~p(p,)Cpm(P23) f dk' dq' 6(u' + x' - x2, + ej) 

• ~ T~(k'q',k23)~O(k'q',k2,) 
kl/j 

x ('/kt(P23) + ak,(P23)[b(pl) - b(p]) - b(p~) - b(p~)])  (166) 
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In Eq. (135) j F  is given as a sum over pairs a, but the three terms 
differ only in the labeling of the primed momenta. Hence each term gives 
the same contribution and the result is found to be 

j F =  3 E J i  7 (167) 
i 

where 

( J i V b ) ( P l )  = 2~'2hsf dp2dp, f dk[38(u + x - x'23 + ei)  

X E F , --F , T/~ (k23 , kq) T i (k23 , kq) 
k t / i  

• {Sk,[b(p,) + b(p2) + b(p3) - b(p])] - fi,k(P~3)) (168) 

7. DISCUSSION 

The analysis given above has dealt with transport in a moderately 
dense gas in which the particles can bind together to form molecules. 
Bound-state contributions were calculated in the Enskog order, which is the 
next order in density beyond that of Boltzmann, and involves collisions in 
clusters of three particles instead of the binary collisions basic to the 
Boltzmann equation. The analysis was based on the correlation-function 
approach and so is applicable primarily to transport coefficients such as the 
thermal conductivity and viscosity. 

The discussion has centered on the triple-collision operator 12 defined 
by Eq. (40). In Eq. (43) this operator was broken down into two parts, 
12 = I~ + I~'. The part I~' arises because of equilibrium pair correlations, 
and its bound-state contribution (which is analogous to the bound-state 
contribution to the Beth-Uhlenbeck formula) is given by Eq. (79). The part 
I~ was further broken down, 1~ = F + G. The operator G, which involves 
only the two-body problem, is seen by Eq. (50) to represent a modification 
of the linearized Boltzmann collision operator like the Enskog correction to 
the collision frequency; the bound-state contribution to G is given by Eqs. 
(50), (52), and (73). The operator F depends on the three-body problem. Its 
bound state part, denoted by J, is expressed in Eqs. (129) and (141) as the 
sum of terms corresponding to molecular dissociation, formation, atom- 
molecule scattering (including inelastic scattering), and rearrangement colli- 
sions. The detailed form of the operators comprising J were worked out in 
Section 6. These have roughly a Boltzmann gain-loss form but depend on 
the amplitudes (or S-matrix elements) for the various processes which can 



Triple-Collision Operator for a Quantum Gas 287 

occur in the atom-molecule system. The operator which describes inelastic 
scattering is basically the linearized form of the Waldmann-Snider collision 
operator. However, there are also terms containing the matrix "/mn of Eq. 
(156) which are due to a correlation over the molecular state of the fluxes in 
the Green-Kubo formula. These terms, which have apparently not been 
obtained in the context of the Waldmann-Snider equation, arise because 
the composite nature of a molecule allows for a flux across it; this effect 
can occur even with elastic collisions. 

Numerical evaluation of the transport coefficients would require input 
regarding the various amplitudes, and this problem has not been considered 
here. Such evaluation should also include the collisional transfer contribu- 
tions, as well as the purely scattering contributions which have been 
discussed by Sengers et al. (17) and Resibois. (18) 

Some understanding of collisional transfer can be obtained by the ad 
hoc inclusion of potential terms in the pair functions A2, B 2. In particular 
the energy flux for the pair 1,2 is 

Si = (1 /2m)(  (1 /m)[  PliP 2 + P2i/P 2 ] 

"{- ( P l i  "~ P2i) VI2 - ri(Plj + P2j) O V,2/Orj) (169) 

where r i is the relative position of the two atoms. The momentum flux for 
the pair is (22) 

Tij = (1 /m)[  P,iPlj + P2iP2j] - t~0 VI2/Ot i (170) 

(In a mixture the particle fluxes do not depend on the potential energy and 
so there are no collisional-transfer contributions to the coefficients of 
diffusion.) Matrix elements such as (150) and (156) should then be replaced 
by matrix elements of the above operators, such as 

(S/)m. = f dq,2~bm(q,2)S?p.(q,2) (171) 

The transformation to relative and total momenta gives 

S i = (Pi /2m)I(P2/4rn)  + hi + (Pj /2m) T,~ "t 

where 

Tij = PiPj/2m + T/) nt 
(172) 

T/~. nt = 2qiqj/m - rio V/Or, (173) 

Here the particle labels have been dropped; P denotes the total momentum 
of the pair and q the relative momentum. In addition h is the Hamiltonian 
for the pair, in the center-of-mass frame. 
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The internal stress (173) can be expressed as 

T~nt_ 1 d [ qirj + qjri ] 
2 d t  

_ 1 d 2 (174) - -~m dt---srirj 

This shows that matrix elements of Tint vanish between states of equal 
energy. Consequently, the matr ices/3, ,  and a,,, defined in Eqs. (150) and 
(156) (but with potential terms included) can be calculated with the energy 
and momentum fluxes replaced by 

Sic~ ) + hi 
T'~ ~ = pipj/2 m (175) 

These describe a convective flow of energy and momentum due to motion 
of the molecule with velocity Pi/2m. The convective fluxes are just the ones 
normally used when the Chapman-Enskog procedure is applied to solve 
the kinetic equations for a molecular gas. However, the matrix elements ./,,, 
defined in Eq. (156) will involve an autocorrelation of the internal stress, 
and in general this will not vanish. It may nevertheless be small; indeed Eq. 
(174) shows that there is no internal stress for a model, such as the rigid 
dumbbell, which has a fixed moment of inertia. 

APPENDIX 

Here we show how the formula (40) can be reduced to the linearized 
Boltzmann collision operator with the quantum-mechanical cross section. 

As in Section 5 we choose the contour C in Eq. (67) to consist of lines 
at w = E + ic and w = E - i (  with e = �89 The lower part of the contour 

gives no contribution to 11 , and so Eqs. (40), (67) yield 

(a, Ilb)o= - (2V~ /h4 ) l im  ( ~  dEe-~E f de dqdq' e-~'~A2(~) 
", z r j _  ~ 

• E B2( )I[(E - . )2  + _ . , > , .  

• I t ( E +  i,,q' ,q)l 2 

= (2rr2VX/h4)f___~176 aEe-aEf ae dqdq'e-BKA2(~) 

x [ . z ( o 2 )  - B 2 ( ~ ' ) ] 8 ( E  - u)8 (E  - u ' ) l t (E + i0 ,  q ' , q ) [  2 

= (2~r2Vg/h4)f dedqdq'e- '(K+u)8(u - u') 

• A2(~ - B2(~")]It(E + i0,q',q)l 2 
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The scattering amplitude is given by 

f = ~rmht(E + iO, q', q) 

and the cross section is a = Ifl 2. Using Eq. (42) for the Maxwellian we get 

= ( 2 / m ) 2 f  @l @2 aq' r(p,) (pi)8(u - u')a(q, q') (a, I |b)  0 

• a (p , ) [b (p , )  + b(P2) - b (p ' , ) -  b(p~)] 

The delta function allows for the integration over the magnitude of q', and 
the result (41) is then obtained. 
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